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1 Final Tuesday 8 PM

1.1 Problem 1

. (15 points) Let (a,) and (b,) be two sequences of real numbers such that the sequence (a,,+b,)
is bounded and lim a,, = 0.

Prove that lim a,b,, = 0.

Solution. Sequence (a,) converges, therefore by Theorem 9.1 (a,) is bounded, which means
that there exists M; > 0 such that

Vne N (la,| < M). (1.1)
Since (a,, + b,,) is bounded, there exists My > 0 such that
Vn e N (la, + b,| < My). (1.2)
We conclude, using the triangle inequality, that for all n € N
|bn| = |an + by — an| < |an + bo| + |an| < My + Ms, (1.3)
the sequence (b,,) is bounded. Now we have that for all n € N
0 < |anb,| < |an|(My + My). (1.4)

Sequence (a,) converges to zero, so by Theorem 9.2

and (1.4)), (1.5) and the Squeeze Lemma (20.14) yield
lim a,,b,, = 0. (1.6)

1.2 Problem 2

. (15 points) Let (a,) be a Cauchy sequence. Prove that the sequence ,/a, is also a Cauchy
sequence.

Solution. We may assume that a, > 0 to make sure that ,/a,, is well defined.

Solution 1. Fix ¢ > 0. By Theorem 10.11, (a,) converges. Denote by a > 0 the limit of (a,,),
lim a,, = «a.

e Case 1: If a = 0, then there exists Ny € N such that
2
n>N = aq,< T

so for any m,n > N

|\/@—\/_am|§\/@+«/_am<%+§:a (1.8)
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e Case 2: If a > 0, then by Theorem 9.11 there exists N; € N such that

n>N = a,> %. (1.9)

(ay) is a Cauchy sequence, therefore there exists Ny such that
n,m >Ny = |a, —an| < Vae. (1.10)
Then for any m,n > N := max{Ny, No}

[ [
Ay, — A/ Q| = < < e. 1.11
VoVl e = VA _—

It follows from ((1.8) and ({1.11f) that there exists N € N such that for all m,n > N

Van — vam] <, (1.12)

(yv/ay,) is a Cauchy sequence.

Solution 2. Sequence (a,) is a Cauchy sequence, so by Theorem 10.10 (a,,) is bounded, and
there exists M > 0 such that for all n € N

an < M. (1.13)

We proved in Lecture 13 that the function f(x) = /x is continuous on [0, +00). By Theorem
19.2 (Cantor-Heine Theorem), f(z) is uniformly continuous on [0, M].

Sequence (a,) is a Cauchy sequence in [0, M], and f is uniformly continuous on [0, M|, therefore
by Theorem 19.4 the sequence (f(a,)) = (y/a,) is a Cauchy sequence.

Solution 3. Notice that for any x,y € [0,4+00), © < y we have
y<y—zr+2/y—avo+Vr=\y—z+Vr) (1.14)
so by taking the square root on both sides of the inequality we get
VISVI—THVE = i-VE<Vi—w (1.15)
Fix € > 0. Since (a,) is a Cauchy sequence, there exists N € N such that for all m,n > N
|y — an| < 2. (1.16)

Then for all m,n > N
IVan — Vam| < Van — an| < ¢, (1.17)
where we used ([1.15)) in the first inequality.
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1.3 Problem 3

. (15 points) Determine if the following series converges

§ s )

— (1.18)
n=1 3
Justify your answer.
Solution. Use the root test
a3 (V2 + (=1)m)" Vnd (V2 + (—-1)" 241
lim sup \/n (\/_ 3"( ") = lim sup \/n_(\/_g (=1") = \/_3+ <1, (1.19)

where we used that v/2 < 2 and
lim V/n? = 1 (1.20)

by the Important Example 3.
It follows from the root test (Theorem 14.9) that the series (|1.18)) is absolutely convergent.

1.4 Problem 4

. (15 points) Let function f : (a,b) — R be such that
(i) f is bounded on (a,b);

(ii) f is continuous on (a,b);

(iii) f is monotonic on (a,b).

Prove that f is uniformly continuous on (a, b).

(Hint. You can use Theorem 19.5.)

Solution. Consider the sequences (a,,) and (b,) with

1 1
apb=a+—, b,=b——. (1.21)
n n
Then the sequences ( f(a,)) and (f(b,)) are monotonic and bounded, therefore by Theorem 10.2

(f(an)) and (f(b,)) converge. Denote

A :=lim f(a,), B :=lim f(by), (1.22)
and let
) ) f(@), =€ (a,b),
fila,b] = R, f(z)=< A, T =a, (1.23)
B, x =Db.

By Theorem 19.5 it is enough to show that f is continuous on [a, b].
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Suppose that f is increasing. Fix ¢ > 0. Then
lim f(a,) = A = 3N (e)eN <n > Ni(e) = flap) — A< g). (1.24)
Then for any z € (a,a + m) by monotonicity

fx) = A< flan,(e)+1) — A <, (1.25)

and thus lim, .+ f (x) = A, f is continuous at a.

Similarly,
lim f(by) =b = 3INy() €N (n > No(e) = B — f(by) < g>, (1.26)

b) by monotonicity

and for any = € (b—

NQ( )+17
B — f(z) < B = f(bny(e)+1) <& (1.27)

We conclude that f is continuous on [a, b].

If f is decreasing on (a,b), the proof follows from the same argument by switching the roles

of A7 (a’n> and Ba (bn) in " - "

1.5 Problem 5

. (15 points) Let f: R — R be differentiable on R and satisfy

f'(@) = Af(z) (1.28)

for some A > 0.
Prove that f(x) = Ce** for some C € R.

(Hint. Consider function g(z) = f(x)e ** and its derivative.)
Solution. Consider g(z) = f(x)e **. Then using the product rule and (1.28) we get
g (x) = f(x)e™ — f(x)he™ = Af(2)e ™ — f(x)Ae™* = 0. (1.29)

Therefore, g € D(R) and ¢'(x) = 0 for all z € R. By Corollary 29.4, there exists C' € R such
that
g(z) = f(z)e™ = C. (1.30)

We conclude that f(x) = Cel®.
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1.6 Problem 6

. (15 points) Compute the limit

lim = (1.31)
Solution. First, write 1
pTE = BT = T o8 (1.32)
By the L’Hopital’s rule,
i 087 oy - (1.33)

Therefore, by the continuity of x +— e*, we get that

log @ log x 1

limet-s = Mot o0 = o7, (1.34)
z—1
1.7 Problem 7
. (15 points) Let
FiR=R, flz) = (1.35)
Find a polynomial P(x) such that
f(z) — P(z) =o(z®) as x — 0. (1.36)
Solution. Compute the derivatives of f
fllz) = e % (2 — 22), (1.37)
F(x) = 27 (2 — 22)? — 2% = 27 ((2 — 22) — 2), (1.38)
(@) = e ((2 = 22)2 — 2)(2 — 22) + €7 (—4(2 — 21)). (1.39)

We see that f € DO)(R). By applying the local Taylor’s theorem with the remainder in
Peano’s form we have

x + fﬁ(o)mQ + f”’(0)$3) =o(z®) as x—0. (1.40)

F@) = (£(0) + £ (0)z + -

Therefore

//0 ///0 2 4 2
:c+f ( )x2+f ( )x3:1+2x+—x2——x3:1+2x—|—x2—§x3. (1.41)

P(x) = f(0)+ f'(0) ol 3 2 6
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10.

2 Final Wednesday 3 PM

2.1 Problem 1

(15 points) Using only the definition of the limit of a sequence, prove that

. 2n+3 1
nHOO4TL—|—5 2'

Solution. Fix ¢ > 0. For any n € N we have that

2n + 3 ‘_’471—1-6 4n—|—5)‘ 1 1

4n+5 2(4n + 5 Sh+10 " 8n

Therefore, for any n > [g-] we get
2n+3 1 - 1 - 8e
dn+5 2 8n 8

2n+3 __ 1

dn+5 ~ 27

By Definition 7.1 lim,,

(15 points) Using only the definition of the limit of a sequence, prove that

on + 6
1m

Solution. Fix € > 0. For any n € N we have that

5n + 6 Sn+6—5(n+1) 1 1
et =i
n+1 n+1 n+1

Therefore, for any n > [%] we get

‘5n+6

5)<1<1
- — < — =¢.
n+1 n %

on+6 __ 5

By Definition 7.1 lim,, 00 255

2.2 Problem 2

(15 points) Prove that the sequence (a,) given by

1
ay = A_l’ Apt1 = /Qnp

is bounded and monotonic. Compute lim a,,.
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11.

Solution. First we show that (a,) is bounded. Indeed, a; < 1, and for any n € N
ap, <1 = apy =+a, <1 (2.8)
By the principle of mathematical induction, for all n € N
a, < 1. (2.9)

Similarly, for all n € N we have that a, > 0, and we conclude that a,, € (0,1) for all n € N.
Next, for any n € N

A1 — Qp = /O — ap = Van(1 —/a,) > 0, (2.10)
where we used that a,, € (0,1). We conclude that (a,) in increasing.

By Theorem 10.2, sequence (a,) converges. Denote a := lima,,. We have that for any n € N
az. = ay,. (2.11)

If we take the limit on both sides of the equality , by Theorem 9.4 we get that

ac=a = ac{0,1}. (2.12)

Since (a,,) is increasing, a, > 1 for all n € N, and by the corollary to Theorem 9.11 and (2.19)
we have that

a>>- = a=1. (2.13)

IO,

Therefore, lima,, = 1.

(15 points) Prove that the sequence (a,) given by

1

ga Qpt1 = /Qnp (214)

a; =
is bounded and monotonic. Compute lim a,,.

Solution. (The same argument as in the previous problem). First we show that (a,) is
bounded. Indeed, a; < 1, and for any n € N

a, <1 = ap =+a, <1. (2.15)
By the principle of mathematical induction, for all n € N
a, < 1. (2.16)

Similarly, for all n € N we have that a, > 0, and we conclude that a,, € (0,1) for all n € N.
Next, for any n € N

Upi1 — A = /Gy — @y = Va,(1 — a,) >0, (2.17)
where we used that a, € (0,1). We conclude that (a,) in increasing.

By Theorem 10.2, sequence (a,) converges. Denote a := lima,,. We have that for any n € N

az. = ay,. (2.18)
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12.

13.

If we take the limit on both sides of the equality ([2.18]), by Theorem 9.4 we get that
a*=a = ac{0,1}. (2.19)

Since (a,) is increasing, a, > % for all n € N, and by the corollary to Theorem 9.11 and ({2.19))
we have that

a> = a=1 (2.20)

W

Therefore, lima,, = 1.

2.3 Problem 3

(15 points) Determine if the following series converges

S W2 VR(WE - V) (V2 - ") 2.21)

Justify your answer.
Solution. Use the ratio test. Denote the n-th term of the series by a,,
an = (V2= V2)(V2-V2) - (V2= V2. (2.22)

Then

lim 2L = lim(V2 — /2) = V2 — 1, (2.23)
a,
where we used that lim ¢/2 = 1 (Important Example 4), and that any subsequence of a
convergent sequence converges to the same limit (Theorem 11.3).

Since v/2 < 2, we have that

<1 2.24
o, (2:24)

and thus by the ration test (Theorem 14.8) the series (2.21)) converges.

2.4 Problem 4

(15 points) Consider the function

fla) = log{l - 37) (2.25)

T

Note that function f is not defined at x = 0.

Construct a continuous extension of f defined at x = 0 (show that it is indeed continuous at
x=0).
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14.

Solution. Function  — log(1 — 3z) is defined and continuous on the interval (—oo, 5), and
function 2 — 1 is defined and continuous on R\ {0}. Therefore, the domain of definition of f

is (—o0,1/3) \ {0}.
In order to construct an extension of f continuous at x = 0 we introduce the function
[ 1 3 _ f(x)a T 7£ 0,
f.(—oo,§>—>R, f(x)—{C’ e (2.26)

f is continuous on (—oo,1/3) \ {0}, and we have to determine the value ¢ for which f is
continuous at zero.

By definition, f is continuous at x = 0 if

lim f(z) = f(0) = c. (2.27)

z—0

By using the Important Example 13 and Theorem 20.5 (about the limit of a composition of
functions) (one can also use the L’Hoépital’s rule) we find ¢

~ log(1 — 3 log(1 — 3
lim f(z) = lim 08 =30 gy loel=32) 0y (2.28)
z—0 z—0 T z—0 —3x
The continuous extension of f is given by (2.26)) with ¢ = —3.
(15 points) Consider the function
vVi+axr—1
f(z) = (2.29)

Vito—1
Note that function f is not defined at x = 0.

Construct a continuous extension of f defined at x = 0 (show that it is indeed continuous at
x=0).

Solution. Function f is defined and continuous on the interval [—1, +o00) \ {0}.

In order to construct an extension of f continuous at x = 0 we introduce the function

fi[-1,00) = R, f(:z:):{ f(@), =70, (2.30)

c, x=0.

f is continuous on [—1, 00)\ {0}, and we have to determine the value ¢ for which f is continuous
at zero.

By definition, f is continuous at x = 0 if

lim f(z) = f(0) = c. (2.31)

z—0
We find ¢ by computing the limit (one can also use the L'Hopital’s rule)

= . VI+z—1 . 14zxz-1 V1+2)?+V1+x+1
lim f(z) = im ————— = lim : =
z—0 zﬁOwB/l—f-:L'—l zﬁOw/]_—|-g;—|—1 1+.Z'—1

3
— 2.32
2’ ( )
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15.

since
(\/1+x—1)(\/1+x+1):1+x—1:x (2.33)
and

(V1+z-D((V1i+a) +V1+o+1)=1+2—-1=u. (2.34)
The continuous extension of f is given by (2.30) with ¢ = 3/2.

2.5 Problem 5

(15 points) Let f: (a,b) — R satisfy
(i) f is differentiable on (a, b)
(ii) f is unbounded on (a,b).
Prove that f’, the derivative of f, is also unbounded on (a,b).

(Hint. You can use proof by contradiction.)

Solution. Suppose that f’ is bounded on (a,b). This means that there exists M > 0 such
that for all x € (a,b)
|f'(2)] < M. (2.35)

Fix a point 2 € (a,b). Then for any x € (a,b), x > xy, we have that
f € C([wo,2]),  f € D((xo,7)). (2.36)

It follows from the mean value theorem (Theorem 29.3) applied to the function f on the
interval [xo, z| that there exists ¢ € (z¢,x) for which

f(@) = f(@o) = f'(c) (@ — o). (2.37)
Therefore, by using we get the following bound
[ (@)] = 1f (o) + f(c)(x — mo)| < [f(wo)| + |f'()|l& — wo| < |f(wo)| + M|b—al,  (2.38)

where we used that ¢ € (a,b) and |z — x| < |b — al.

Similarly, for any = € (a,b), < o, by applying the mean value theorem to f on [z, z,] we
get

f(@o) = f(@) = f'(c)(wo — 2), (2.39)
which again leads to the bound
|f (@) < [f(@o)| + [ (0)l|z = wol < |f(wo)| + MIb—al. (2.40)

We conclude that if f’ is bounded on (a,b), then the function f is bounded on (a,b) by
|f(zo)| + M|b — a|, which contradicts to the assumption that f is unbounded on (a,b). The
derivative f’ is thus unbounded on (a,b).
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2.6 Problem 6

16. (15 points) Compute the limit

lim z(e® +1) —2(e” — 1)
z—0 3

. (2.41)

Solution. Both numerator and denominator tend to zero, so by applying the L’Hoépital’s rule
(twice) we get

lim e+ 1) (e ) = lim (" +1) + ze € —lim —rre —¢ (2.42)
z—0 3 z—0 32 z—0 312
T T __ LT T 1
L P (2.43)
z—0 6x z—0 6 6
17. (15 points) Compute the limit
1 1
lim ( - ) (2.44)
s—1\logx x—1

Solution. First rewrite the above function as

1 I x—1-logx

— = : 2.45
logz x—1 logz(x—1) (2.45)

We see that as x tends to 1, both numerator and denominator tend to zero, so by applying
the L’Hopital’s rule (twice) we get

1= 1-1
lim L1108 B (2.46)
=1 logx(r —1) =1 (r—1) +logw
1
: = 1
2.7 Problem 7
18. (15 points) Let
fil-1,400) = R, f(z)=v1+zx. (2.48)
Show that ) .
T T
(14t _)‘ < — 2.4
‘f@) (+2 8/1= 16 (2.49)
for z € [0, 1].

(Hint. Use Taylor’s formula with remainder in Lagrange’s form.)
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Solution. Compute the derivatives of f

Fa) =501+, (2.50)
F@) =~ 2) 2, (2.51)
fﬁwﬂ:gﬂ+xYW? (2.52)
We see that f(0) =1, f'(0) = 3, f”(0) = —1, and thus
1+ g - %2 (2.53)

coincides with the Taylor’s polynomial of order 2 of f at x = 0. Therefore, by the Taylor’s
theorem with the remainder in Lagrange’s from (Corollary 31.3), for any = € (0, 1] there exists
a number & between 0 and x such that

x a2’ f(g)(g) 3
ﬂ@—@+§—§): T (2.54)
Plugging in the expression of f®) computed earlier we get the following bound
r  x? 3(14-6)~%/2 3 1
(1 ———(:8 5 < - 2,
)f(x) ( T3 8) 31 8.3 16 (2.55)

where we used that for z € (0,1] and & € (0, 1]

<1 ;<
T+ =

<1, and L. (2.56)
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