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1 Final Tuesday 8 PM

1.1 Problem 1

1. (15 points) Let (an) and (bn) be two sequences of real numbers such that the sequence (an+bn)
is bounded and lim an = 0.

Prove that lim anbn = 0.

Solution. Sequence (an) converges, therefore by Theorem 9.1 (an) is bounded, which means
that there exists M1 > 0 such that

∀n ∈ N (|an| ≤M1). (1.1)

Since (an + bn) is bounded, there exists M2 > 0 such that

∀n ∈ N (|an + bn| ≤M2). (1.2)

We conclude, using the triangle inequality, that for all n ∈ N

|bn| = |an + bn − an| ≤ |an + bn|+ |an| ≤M1 +M2, (1.3)

the sequence (bn) is bounded. Now we have that for all n ∈ N

0 ≤ |anbn| ≤ |an|(M1 +M2). (1.4)

Sequence (an) converges to zero, so by Theorem 9.2

lim |an|(M1 +M2) = 0, (1.5)

and (1.4), (1.5) and the Squeeze Lemma (20.14) yield

lim anbn = 0. (1.6)

1.2 Problem 2

2. (15 points) Let (an) be a Cauchy sequence. Prove that the sequence
√
an is also a Cauchy

sequence.

Solution. We may assume that an ≥ 0 to make sure that
√
an is well defined.

Solution 1. Fix ε > 0. By Theorem 10.11, (an) converges. Denote by a ≥ 0 the limit of (an),
lim an = a.

• Case 1: If a = 0, then there exists N1 ∈ N such that

n > N ⇒ an <
ε2

4
, (1.7)

so for any m,n > N

|
√
an −

√
am| ≤

√
an +

√
am <

ε

2
+
ε

2
= ε. (1.8)
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• Case 2: If a > 0, then by Theorem 9.11 there exists N1 ∈ N such that

n > N1 ⇒ an >
a

4
. (1.9)

(an) is a Cauchy sequence, therefore there exists N2 such that

n,m > N2 ⇒ |an − am| <
√
aε. (1.10)

Then for any m,n > N := max{N1, N2}

|
√
an −

√
am| =

|an − am|√
am +

√
am
≤ |an − am|√

a
< ε. (1.11)

It follows from (1.8) and (1.11) that there exists N ∈ N such that for all m,n > N

|
√
an −

√
am| < ε, (1.12)

(
√
an) is a Cauchy sequence.

Solution 2. Sequence (an) is a Cauchy sequence, so by Theorem 10.10 (an) is bounded, and
there exists M > 0 such that for all n ∈ N

an ≤M. (1.13)

We proved in Lecture 13 that the function f(x) =
√
x is continuous on [0,+∞). By Theorem

19.2 (Cantor-Heine Theorem), f(x) is uniformly continuous on [0,M ].

Sequence (an) is a Cauchy sequence in [0,M ], and f is uniformly continuous on [0,M ], therefore
by Theorem 19.4 the sequence (f(an)) = (

√
an) is a Cauchy sequence.

Solution 3. Notice that for any x, y ∈ [0,+∞), x < y we have

y ≤ y − x+ 2
√
y − x

√
x+
√
x = (

√
y − x+

√
x)2, (1.14)

so by taking the square root on both sides of the inequality we get
√
y ≤
√
y − x+

√
x ⇒ √

y −
√
x ≤
√
y − x. (1.15)

Fix ε > 0. Since (an) is a Cauchy sequence, there exists N ∈ N such that for all m,n > N

|an − am| < ε2. (1.16)

Then for all m,n > N
|
√
an −

√
am| ≤

√
|an − am| < ε, (1.17)

where we used (1.15) in the first inequality.
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1.3 Problem 3

3. (15 points) Determine if the following series converges

∞∑
n=1

n3
(√

2 + (−1)n
)n

3n
. (1.18)

Justify your answer.

Solution. Use the root test

lim sup
n

√
n3
(√

2 + (−1)n
)n

3n
= lim sup

n
√
n3
(√

2 + (−1)n
)

3
=

√
2 + 1

3
< 1, (1.19)

where we used that
√
2 < 2 and

lim
n
√
n3 = 1 (1.20)

by the Important Example 3.

It follows from the root test (Theorem 14.9) that the series (1.18) is absolutely convergent.

1.4 Problem 4

4. (15 points) Let function f : (a, b)→ R be such that

(i) f is bounded on (a, b);

(ii) f is continuous on (a, b);

(iii) f is monotonic on (a, b).

Prove that f is uniformly continuous on (a, b).

(Hint. You can use Theorem 19.5.)

Solution. Consider the sequences (an) and (bn) with

an = a+
1

n
, bn = b− 1

n
. (1.21)

Then the sequences (f(an)) and (f(bn)) are monotonic and bounded, therefore by Theorem 10.2
(f(an)) and (f(bn)) converge. Denote

A := lim f(an), B := lim f(bn), (1.22)

and let

f̃ : [a, b]→ R, f̃(x) =


f(x), x ∈ (a, b),
A, x = a,
B, x = b.

(1.23)

By Theorem 19.5 it is enough to show that f̃ is continuous on [a, b].
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Suppose that f is increasing. Fix ε > 0. Then

lim f(an) = A ⇒ ∃N1(ε) ∈ N
(
n > N1(ε) ⇒ f(an)− A < ε

)
. (1.24)

Then for any x ∈ (a, a+ 1
N1(ε)+1

) by monotonicity

f(x)− A ≤ f(aN1(ε)+1)− A < ε, (1.25)

and thus limx→a+ f̃(x) = A, f̃ is continuous at a.

Similarly,

lim f(bn) = b ⇒ ∃N2(ε) ∈ N
(
n > N2(ε) ⇒ B − f(bn) < ε

)
, (1.26)

and for any x ∈ (b− 1
N2(ε)+1

, b) by monotonicity

B − f(x) ≤ B − f(bN2(ε)+1) < ε. (1.27)

We conclude that f̃ is continuous on [a, b].

If f is decreasing on (a, b), the proof follows from the same argument by switching the roles
of A, (an) and B, (bn) in (1.25) - (1.26).

1.5 Problem 5

5. (15 points) Let f : R→ R be differentiable on R and satisfy

f ′(x) = λf(x) (1.28)

for some λ > 0.

Prove that f(x) = Ceλx for some C ∈ R.
(Hint. Consider function g(x) = f(x)e−λx and its derivative.)

Solution. Consider g(x) = f(x)e−λx. Then using the product rule and (1.28) we get

g′(x) = f ′(x)e−λx − f(x)λe−λx = λf(x)e−λx − f(x)λe−λx = 0. (1.29)

Therefore, g ∈ D(R) and g′(x) = 0 for all x ∈ R. By Corollary 29.4, there exists C ∈ R such
that

g(x) = f(x)e−λx = C. (1.30)

We conclude that f(x) = Ceλx.
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1.6 Problem 6

6. (15 points) Compute the limit
lim
x→1

x
1

1−x . (1.31)

Solution. First, write

x
1

1−x = elog x
1

1−x
= e

1
1−x

log x. (1.32)

By the L’Hôpital’s rule,

lim
x→1

log x

1− x
= lim

x→1

1
x

−1
= −1. (1.33)

Therefore, by the continuity of x 7→ ex, we get that

lim
x→1

e
log x
1−x = elimx→1

log x
1−x = e−1. (1.34)

1.7 Problem 7

7. (15 points) Let
f : R→ R, f(x) = e2x−x

2

. (1.35)

Find a polynomial P (x) such that

f(x)− P (x) = o(x3) as x→ 0. (1.36)

Solution. Compute the derivatives of f

f ′(x) = e2x−x
2

(2− 2x), (1.37)

f ′′(x) = e2x−x
2

(2− 2x)2 − 2e2x−x
2

= e2x−x
2

((2− 2x)2 − 2), (1.38)

f ′′′(x) = e2x−x
2

((2− 2x)2 − 2)(2− 2x) + e2x−x
2

(−4(2− 2x)). (1.39)

We see that f ∈ D(3)(R). By applying the local Taylor’s theorem with the remainder in
Peano’s form we have

f(x)− (f(0) + f ′(0)x+
f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3) = o(x3) as x→ 0. (1.40)

Therefore

P (x) = f(0)+ f ′(0)x+
f ′′(0)

2!
x2+

f ′′′(0)

3!
x3 = 1+2x+

2

2
x2− 4

6
x3 = 1+2x+x2− 2

3
x3. (1.41)

Page 6



2 Final Wednesday 3 PM

2.1 Problem 1

8. (15 points) Using only the definition of the limit of a sequence, prove that

lim
n→∞

2n+ 3

4n+ 5
=

1

2
. (2.1)

Solution. Fix ε > 0. For any n ∈ N we have that∣∣∣2n+ 3

4n+ 5
− 1

2

∣∣∣ = ∣∣∣4n+ 6− (4n+ 5)

2(4n+ 5)

∣∣∣ = 1

8n+ 10
<

1

8n
. (2.2)

Therefore, for any n > [ 1
8ε
] we get∣∣∣2n+ 3

4n+ 5
− 1

2

∣∣∣ < 1

8n
<

8ε

8
= ε. (2.3)

By Definition 7.1 limn→∞
2n+3
4n+5

= 1
2
.

9. (15 points) Using only the definition of the limit of a sequence, prove that

lim
n→∞

5n+ 6

n+ 1
= 5. (2.4)

Solution. Fix ε > 0. For any n ∈ N we have that∣∣∣5n+ 6

n+ 1
− 5
∣∣∣ = ∣∣∣5n+ 6− 5(n+ 1)

n+ 1

∣∣∣ = 1

n+ 1
<

1

n
. (2.5)

Therefore, for any n > [1
ε
] we get∣∣∣5n+ 6

n+ 1
− 5
∣∣∣ < 1

n
<

1
1
ε

= ε. (2.6)

By Definition 7.1 limn→∞
5n+6
n+1

= 5.

2.2 Problem 2

10. (15 points) Prove that the sequence (an) given by

a1 =
1

4
, an+1 =

√
an (2.7)

is bounded and monotonic. Compute lim an.
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Solution. First we show that (an) is bounded. Indeed, a1 < 1, and for any n ∈ N

an < 1 ⇒ an+1 =
√
an < 1. (2.8)

By the principle of mathematical induction, for all n ∈ N

an < 1. (2.9)

Similarly, for all n ∈ N we have that an > 0, and we conclude that an ∈ (0, 1) for all n ∈ N.
Next, for any n ∈ N

an+1 − an =
√
an − an =

√
an(1−

√
an) > 0, (2.10)

where we used that an ∈ (0, 1). We conclude that (an) in increasing.

By Theorem 10.2, sequence (an) converges. Denote a := lim an. We have that for any n ∈ N

a2n+1 = an. (2.11)

If we take the limit on both sides of the equality (2.18), by Theorem 9.4 we get that

a2 = a ⇒ a ∈ {0, 1}. (2.12)

Since (an) is increasing, an ≥ 1
4
for all n ∈ N, and by the corollary to Theorem 9.11 and (2.19)

we have that
a ≥ 1

4
⇒ a = 1. (2.13)

Therefore, lim an = 1.

11. (15 points) Prove that the sequence (an) given by

a1 =
1

3
, an+1 =

√
an (2.14)

is bounded and monotonic. Compute lim an.

Solution. (The same argument as in the previous problem). First we show that (an) is
bounded. Indeed, a1 < 1, and for any n ∈ N

an < 1 ⇒ an+1 =
√
an < 1. (2.15)

By the principle of mathematical induction, for all n ∈ N

an < 1. (2.16)

Similarly, for all n ∈ N we have that an > 0, and we conclude that an ∈ (0, 1) for all n ∈ N.
Next, for any n ∈ N

an+1 − an =
√
an − an =

√
an(1−

√
an) > 0, (2.17)

where we used that an ∈ (0, 1). We conclude that (an) in increasing.

By Theorem 10.2, sequence (an) converges. Denote a := lim an. We have that for any n ∈ N

a2n+1 = an. (2.18)
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If we take the limit on both sides of the equality (2.18), by Theorem 9.4 we get that

a2 = a ⇒ a ∈ {0, 1}. (2.19)

Since (an) is increasing, an ≥ 1
3
for all n ∈ N, and by the corollary to Theorem 9.11 and (2.19)

we have that
a ≥ 1

3
⇒ a = 1. (2.20)

Therefore, lim an = 1.

2.3 Problem 3

12. (15 points) Determine if the following series converges

∞∑
n=1

(
√
2− 3
√
2)(
√
2− 5
√
2) · · · (

√
2− 2n+1

√
2). (2.21)

Justify your answer.

Solution. Use the ratio test. Denote the n-th term of the series by an

an := (
√
2− 3
√
2)(
√
2− 5
√
2) · · · (

√
2− 2n+1

√
2). (2.22)

Then
lim

an+1

an
= lim(

√
2− 2n+3

√
2) =

√
2− 1, (2.23)

where we used that lim n
√
2 = 1 (Important Example 4), and that any subsequence of a

convergent sequence converges to the same limit (Theorem 11.3).

Since
√
2 < 2, we have that

lim
an+1

an
< 1, (2.24)

and thus by the ration test (Theorem 14.8) the series (2.21) converges.

2.4 Problem 4

13. (15 points) Consider the function

f(x) =
log(1− 3x)

x
. (2.25)

Note that function f is not defined at x = 0.

Construct a continuous extension of f defined at x = 0 (show that it is indeed continuous at
x = 0).
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Solution. Function x 7→ log(1 − 3x) is defined and continuous on the interval (−∞, 1
3
), and

function x 7→ 1
x
is defined and continuous on R \ {0}. Therefore, the domain of definition of f

is (−∞, 1/3) \ {0}.
In order to construct an extension of f continuous at x = 0 we introduce the function

f̃ :
(
−∞, 1

3

)
→ R, f̃(x) =

{
f(x), x 6= 0,
c, x = 0.

(2.26)

f̃ is continuous on (−∞, 1/3) \ {0}, and we have to determine the value c for which f̃ is
continuous at zero.

By definition, f̃ is continuous at x = 0 if

lim
x→0

f̃(x) = f̃(0) = c. (2.27)

By using the Important Example 13 and Theorem 20.5 (about the limit of a composition of
functions) (one can also use the L’Hôpital’s rule) we find c

lim
x→0

f̃(x) = lim
x→0

log(1− 3x)

x
= −3 lim

x→0

log(1− 3x)

−3x
= −3 · 1 = −3. (2.28)

The continuous extension of f is given by (2.26) with c = −3.

14. (15 points) Consider the function

f(x) =

√
1 + x− 1

3
√
1 + x− 1

. (2.29)

Note that function f is not defined at x = 0.

Construct a continuous extension of f defined at x = 0 (show that it is indeed continuous at
x = 0).

Solution. Function f is defined and continuous on the interval [−1,+∞) \ {0}.
In order to construct an extension of f continuous at x = 0 we introduce the function

f̃ : [−1,∞)→ R, f̃(x) =

{
f(x), x 6= 0,
c, x = 0.

(2.30)

f̃ is continuous on [−1,∞)\{0}, and we have to determine the value c for which f̃ is continuous
at zero.

By definition, f̃ is continuous at x = 0 if

lim
x→0

f̃(x) = f̃(0) = c. (2.31)

We find c by computing the limit (one can also use the L’Hôpital’s rule)

lim
x→0

f̃(x) = lim
x→0

√
1 + x− 1

3
√
1 + x− 1

= lim
x→0

1 + x− 1√
1 + x+ 1

· (
3
√
1 + x)2 + 3

√
1 + x+ 1

1 + x− 1
=

3

2
, (2.32)
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since

(
√
1 + x− 1)(

√
1 + x+ 1) = 1 + x− 1 = x (2.33)

and

( 3
√
1 + x− 1)(( 3

√
1 + x)2 + 3

√
1 + x+ 1) = 1 + x− 1 = x. (2.34)

The continuous extension of f is given by (2.30) with c = 3/2.

2.5 Problem 5

15. (15 points) Let f : (a, b)→ R satisfy

(i) f is differentiable on (a, b)

(ii) f is unbounded on (a, b).

Prove that f ′, the derivative of f , is also unbounded on (a, b).

(Hint. You can use proof by contradiction.)

Solution. Suppose that f ′ is bounded on (a, b). This means that there exists M > 0 such
that for all x ∈ (a, b)

|f ′(x)| ≤M. (2.35)

Fix a point x0 ∈ (a, b). Then for any x ∈ (a, b), x > x0, we have that

f ∈ C([x0, x]), f ∈ D((x0, x)). (2.36)

It follows from the mean value theorem (Theorem 29.3) applied to the function f on the
interval [x0, x] that there exists c ∈ (x0, x) for which

f(x)− f(x0) = f ′(c)(x− x0). (2.37)

Therefore, by using (2.33) we get the following bound

|f(x)| = |f(x0) + f ′(c)(x− x0)| ≤ |f(x0)|+ |f ′(c)||x− x0| ≤ |f(x0)|+M |b− a|, (2.38)

where we used that c ∈ (a, b) and |x− x0| < |b− a|.
Similarly, for any x ∈ (a, b), x < x0, by applying the mean value theorem to f on [x, x0] we
get

f(x0)− f(x) = f ′(c)(x0 − x), (2.39)

which again leads to the bound

|f(x)| ≤ |f(x0)|+ |f ′(c)||x− x0| ≤ |f(x0)|+M |b− a|. (2.40)

We conclude that if f ′ is bounded on (a, b), then the function f is bounded on (a, b) by
|f(x0)| +M |b − a|, which contradicts to the assumption that f is unbounded on (a, b). The
derivative f ′ is thus unbounded on (a, b).

Page 11



2.6 Problem 6

16. (15 points) Compute the limit

lim
x→0

x(ex + 1)− 2(ex − 1)

x3
. (2.41)

Solution. Both numerator and denominator tend to zero, so by applying the L’Hôpital’s rule
(twice) we get

lim
x→0

x(ex + 1)− 2(ex − 1)

x3
= lim

x→0

(ex + 1) + xex − 2ex

3x2
= lim

x→0

1 + xex − ex

3x2
(2.42)

= lim
x→0

ex + xex − ex

6x
= lim

x→0

ex

6
=

1

6
. (2.43)

17. (15 points) Compute the limit

lim
x→1

( 1

log x
− 1

x− 1

)
. (2.44)

Solution. First rewrite the above function as

1

log x
− 1

x− 1
=
x− 1− log x

log x(x− 1)
. (2.45)

We see that as x tends to 1, both numerator and denominator tend to zero, so by applying
the L’Hôpital’s rule (twice) we get

lim
x→1

x− 1− log x

log x(x− 1)
= lim

x→1

1− 1
x

1
x
(x− 1) + log x

(2.46)

= lim
x→1

1
x2

1
x2

+ 1
x

=
1

2
. (2.47)

2.7 Problem 7

18. (15 points) Let
f : [−1,+∞)→ R, f(x) =

√
1 + x. (2.48)

Show that ∣∣∣f(x)− (1 + x

2
− x2

8

)∣∣∣ ≤ 1

16
(2.49)

for x ∈ [0, 1].

(Hint. Use Taylor’s formula with remainder in Lagrange’s form.)
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Solution. Compute the derivatives of f

f ′(x) =
1

2
(1 + x)−1/2, (2.50)

f ′′(x) = −1

4
(1 + x)−3/2, (2.51)

f (3)(x) =
3

8
(1 + x)−5/2. (2.52)

We see that f(0) = 1, f ′(0) = 1
2
, f ′′(0) = −1

4
, and thus

1 +
x

2
− x2

8
(2.53)

coincides with the Taylor’s polynomial of order 2 of f at x = 0. Therefore, by the Taylor’s
theorem with the remainder in Lagrange’s from (Corollary 31.3), for any x ∈ (0, 1] there exists
a number ξ between 0 and x such that

f(x)−
(
1 +

x

2
− x2

8

)
=
f (3)(ξ)

3!
x3. (2.54)

Plugging in the expression of f (3) computed earlier we get the following bound∣∣∣f(x)− (1 + x

2
− x2

8

)∣∣∣ = 3
8
(1 + ξ)−5/2

3!
x3 ≤ 3

8 · 3!
=

1

16
, (2.55)

where we used that for x ∈ (0, 1] and ξ ∈ (0, 1]

x3 ≤ 1, and
1

(1 + ξ)5/2
≤ 1. (2.56)
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