
MATH180C: Introduction to 
Stochastic Processes II

Lecture A00: math.ucsd.edu/~ynemish/teaching/180cA
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Week 9: 

homework 7 (due Friday, May 27)

Today: Martingales

Next: PK 8.1
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Maximalinequalityfornonegativemartingthm.LT(Xn)n≥ o be a martingale with nonnégative values .

For any X> o and me ☒

PC max Xn ≥ d) ≤ EÇY) ( i )
◦≤ n ≤ m

and (2)
PC maxxn ≥ x ) ≤ EI)

n ≥ o d

Pr¥ Ne prove ( l)
,
(2) follows by faking the limit mio.

Take the vector ( Xo , Xi , - - ,
✗m) and partition the

sample space Wrt the index of the first r.v . rising aboved
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Compute E /Xml = E ( ✗m - l ) using the above partition



Proofofthemaximalinequality
m

7,0

E- (Xm ) = [ E (✗m ✗
◦
< i. . ..
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xn. . < i. xn ≥ ,) ) + E ( ✗m ✗ ◦ < × , _ . . .

✗mai)
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Compute E ( Xm ✗◦ < i. . . . . ✗n . , < i.✗n ≥ ,) by condition ing on

✗ O
,
X , ,

- - -

,
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:

E- (✗m ✗◦ < i. . . . . ✗ni < d. ✗n ≥ d)
=

=

=

Sum for all n

E (Xm) ≥



Exampte
A gambler begins with a unit amount of miney and

faces a series of independent fair games .
In each game

the gamblers bets fraction p of his Current fortune ,

Wins with probability ± ,
loses with probability É .

Estimate the probability that the gambler over doubles
the initial fortune

.

Dente by Zn ,
n ≥ o

,
the gambler's fortune after n

- th game .

Dénote

Then



Martingaletransform
In the previous example the stake in n - th game is

p Zn - i .

What if we chose another strategy ?

Def Let (Xn)n≥ o be a nonnégative martingale ,
and

(et (G) n≥ ◦ be a stochastic process with

Cn = fn (Xo . . . _ , ✗n - i ) .
Then the stochastic process

is called the

Think of • Xx - Xx -i as the winning per unit stake in K-H game
• Ck as your Stake in

K - th
game

decision is made based on the previous history
• (c.Hnas total winnin.gs up to time n



Martingaletransformp.ro#.LetZn--Xo+(c.X)n.LetCksobounded if Zx- , > o
and Ci, -- o if 2-1<-1--0 .

Then (Zn) n» is a martingale
Proof : E ( Znti / Zo

,
. . _ ,
Zn ) =

=

Note that

1f Zn > 0
,
then Ci > O i

- -
-

'
Cn > °

'

and

E- ( Znti / Zo
,
. . _ ,
Zn ) =
I

If Zn -- o
,
then Cnn -- O and E (Zn , /Zo . .

. .

,
Zn) = o - Zn



Gamblingexamplei

Start from the initial fortune ✗ ◦ = 1
.
Define

Zn =

fortune after n - th game with strategie C

Then (Zn)mois a nonnégative martingale , F- (2-0)--1

⇒



C-ergenceofnonnegatixartinalesthm-lflxnlm.io
is a non négative ( super )martingale ,

then

with probability I

and

txamp
An urn initial( y

contains one red ball and one green
ball

.
Chasse a ball and returns it to the urn

together with another ball of the same color . Repeat -

Denote by Xn the fraction of red ball after n itérations .



Examplekont.li) (Xn) n ≥ o is a martingale
Denote by Rn the number of red balls after n-th itération

Rn =

Then
E ( ✗nul ✗ ☐ . . .

-

, ✗n ) =

=

Iii) ✗ n is nonnégative ⇒

(iii) Compute the distribution of X-
P / ✗n = ¥2 ) = ¥,

for KE { I. 2 ,
- - - int l }

P ( ✗ • ≤ x) = x ,
✗ c- (Oil) ⇒ ✗ * -Unit [ ai :)



Brownian motion



Brownianmotion.Hist.criti.catobservation : Robert Brown ( 1827 )
,
botanist

,

Movement of pollen grains in water
• First ( ? ) mathematica l analyse's of Brown ian motion :

Louis Bachelier ( 1900 )
, modeling Stock market

fluctuations

• Brownien motion in physio : Albert Einstein ( 1905 ) and

Marian Smoluchowski ( 1906 )
, explained the

phenomenon observed by Brown

• First rigorous construction of mathematica / Brownien
motion : Norbert Wiener ( 1923)

Brownien motion = Wiener process↑
in mathematics



Brownianmotion.no/-ivati.almostall interesting classes of stochastic processes
contain Brownian motion : BM is a

- martingale
- Markov process

- Gaussian process
- Lévy process ( Independent stationary increment )

• BM allows explicit calculations ,
which are impossible for

more general objects
• BM can be used as ce building block for other processes
• BM has many beautiful mathematica I properties



Brownianmotion.Definitidef.Browni.ammotion with diffusion coefficient 62 is

a continuous time stochastic process (Bt )t ≥,

satisfying
( i )

( ii )

( iii )

62=1 ← standard BM



BMasacontinuoustimecontinuousspaceMarkovp.ro#Re-a: continuous time Discrete Space MC (Xt ) t ≥ o is

character ized by the transition probability function

Pij It ) =

((Xt)t ≥ , has stationary transition probability functions ) .

In particular , PCXs.ie/tlXs-- i ) =

In the continuous state space case
the transition

probabilités are described by the transition density

( i )

(Ii ) P( ✗"+c- A / Xs = >c) = for any x c- IR
,
ACR

E density of ✗su. given Xs = x



BMasacontinuoustimecontinuousspaceMarkovp.ro#Prop-tit1-et (Bt) +≥, be a standard BM .

Then (Bt)t ≥o is a with transition

density

lnformalexplanation : Independent Stationary increment

imply that (Bt),» is Markov with stationary transition

density .
Given Bs -- x ,

information before time s is irre levant
.

PCBs + + ≤ u / Bs -_ x ) =



BMasacontinuoustimecontinuousspaceMarkovp.ro#

1-et t
,
< ta < - - - < tn < •

,
(ai , bi ) C IR .

Then

P / Bt , C- (alibi ) ,Bt, c- (au bal ) =

=

=

More generally ,

P ( Bt
,

c- (alibi )
, 13¥ Car , bz ) , . . - , Btn C- (an , bn))

= f- - - | Pti taxi) Ptit ,Hifi ) - - - Ptn - tn- i (xn-nan) dxi - - - dxn
(a , ,

bi) X - - - ✗ (an , bn)



Diffusionequation.Transitionsemigroup.Generatorl-etlk-h-s.cobe a Markov process .

Suppose we want to know now the distribution of Xt

evolves in time :

[
CK

We call (Pt) t≥ , the transition semigroup [ Ps+ + flx)= Ps ( Ptftx))]
Proposition Let (Pt) t≥ , be the transition semigroup of BM.

Then ( i ) the
"

infinitésimal generator
"

of Plt) is given by

Iii ) density pt satisfis [ K backward ]

(iii) density pt satisfis [ Kforward ]

I diffusion equation


